Point de toricelli

904 mots 4 pages
I. Position du problème
II. Etude d'une condition d'existence et d'unicité
III. Cas (presque) général
IV. Pour aller plus loin

--------------------------------------------------------------------------------
I. Position du problème
On considère un triangle ABC d'un plan euclidien. On se propose de construire, si c'est possible, un point M tel que la somme des distances MA+MB+MC soit minimale.

II. Etude d'une condition d'existence et d'unicité
- Données :

On identifie le plan à l'ensemble C des nombres complexes: on munit le plan d'un repère orthonormé (O;u,v) et à tout point M=O+xu+yv on associe son affixe z=x+iy.
On note a, b et c les affixes de A, B et C, que l'on suppose non nulles. On se donne également trois points P, Q et R d'affixes p, q et r définies par: p=|a|/a q=|b|/b r=|c|/c - Etude du triangle PQR :

Remarquons d'abord que les point P, Q et R sont situés sur le cercle unité (c'est à dire |p|=|q|=|r|=1).

En effet, on a:
|p|=||a|/a|=|a|/|a|=1
et de même |q|=1 et |r|=1.

Soit H le point d'affixe h=p+q+r. Montrons que H est l'orthocentre du triangle PQR.

En effet, la définition de H par son affixe s'écrit h-r=p+q. En notant Q' le point d'affixe -q, Il vient l'égalité vectorielle H-R=P-Q'. Or Q' est le point du cercle unité diamétralement opposé à Q, donc le triangle PQQ' est rectangle en P. Les vecteurs P-Q et P-Q' sont donc orthogonaux; il en est de même des vecteurs P-Q et R-H, donc H appartient à la hauteur de PQR issue de R. On montre de même que H est un point de chacune des hauteurs de PQR; H est donc l'orthocentre de PQR.

Enfin, remarquons que le triangle PQR est équilatéral si et seulement si son orthocentre H et le centre O de son cercle circonscrit (c'est à dire du cercle unité) sont confondus, c'est à dire si h=p+q+r=0.
- Etude du problème lorsque PQR est équilatéral :

Nous supposerons dans la suite du paragraphe que la relation p+q+r=0 est vérifiée.

Remarquons d'abord que la quantité

en relation

  • 2007-Amernord-corrige
    2779 mots | 12 pages
  • Kelo khara
    424 mots | 2 pages
  • Lil wayne
    3139 mots | 13 pages
  • Sujet baccalauréat s
    597 mots | 3 pages
  • Bts ig maths
    844 mots | 4 pages
  • Math
    301 mots | 2 pages
  • Corrigé cap mention
    3402 mots | 14 pages
  • Francais
    454 mots | 2 pages
  • meet the boutins
    439 mots | 2 pages
  • tulipe
    2919 mots | 12 pages
  • Maths
    3974 mots | 16 pages
  • DAE 2000015
    342 mots | 2 pages
  • étude de cas 8
    389 mots | 2 pages
  • Fiche déscriptive
    480 mots | 2 pages
  • Notions ses
    1022 mots | 5 pages