Math dst t°s

2120 mots 9 pages
Archives TS

DAO.01

TS.0910 - DST.01 - Corrigé

Terminale S
2010-2011

EXERCICE 1 On considère dans . 1. Soit la fonction définie sur l’intervalle par : a) Déterminer les limites de en . . en 0 et a) Limite de de . sur possède . D’où ; d’où en 1. sur l’équation dans

b) i) Montrer que pour tout réel ,

ii) Étudier le sens de variation de . c) Démontrer que l’équation une unique solution dans Soit ce réel. 2. Démontrer que pour tout réel l’équation . de

Donc

,

est équivalente à l’équation :

Déterminer graphiquement un encadrement de la solution de par deux entiers consécutifs (on utilisera les représentations graphiques des fonctions et ).

Limite de

en

D’où 3. Déterminer la valeur exacte de (on pourra ). Donc

utiliser un changement de variable dans l’équation ou partir de l’équation

4. Résoudre dans .

l’inéquation

TS 2010.2011 –DAO1.CORRIGÉ

Page 1 sur 14

fichier DAO.01

b) i)

est dérivable sur de :

. Pour tout réel

2. Pour tout réel

de

, l’équation : équivaut à

(car

)

Traçons dans un même repère orthogonal les représentations graphiques respectives des fonctions et .

ii) Pour tout réel ; ; ; D’où Par conséquent :

de

:

est l’unique solution dans l’équation .

de

est donc l’abscisse de l’unique point d’intersection de droite d’équation . et de la courbe d’équation .

est strictement croissante sur

.

c)

est continue et strictement croissante sur . Donc d’après le corollaire du théorème des valeurs intermédiaires, tout réel compris entre et admet un unique antécédent dans . Or et et , .

donc 1 est compris entre

Par conséquent, 1 admet un unique antécédent dans . C'est-à-dire : l’équation possède une unique solution dans . Soit ce réel.
TS 2009.2010 – DST.01.CORRIGÉ

Par conjecture graphique, on trouve :

Page 2 sur 14

fichier DST.01

Or 3. dans . (car d’où donc )

Effectuons un changement de variable. Posons . Pour

en relation

  • Baccalauréat serie s nouvelle calédonie
    2820 mots | 12 pages
  • BTS industriels Groupement C 2008
    833 mots | 4 pages
  • Dede
    250 mots | 1 page
  • Resolution equadiff
    1402 mots | 6 pages
  • Dérivées
    577 mots | 3 pages
  • 2006
    852 mots | 4 pages
  • DS1_SujetA_fonctions
    328 mots | 2 pages
  • Dissert
    533 mots | 3 pages
  • Chapitre 6 term s
    1119 mots | 5 pages
  • Maths bac terminale s
    1350 mots | 6 pages
  • Math 2nde
    840 mots | 4 pages
  • Le document factice qui ne sert a rien
    590 mots | 3 pages
  • Math
    6389 mots | 26 pages
  • . Synthèse De Document Sur La Télé Réalité
    944 mots | 4 pages
  • ebola
    556 mots | 3 pages