Ds3 ts1

665 mots 3 pages
Devoir surveillé de mathématiques N°3 (Terminale S1) Jeudi 17 Novembre 2011 (1h) Problème (20 points) :
PARTIE A :

Soit f la fonction définie sur

\

1 ;2 .

par f(x)=

.

Soit Cf la courbe représentative de la fonction f dans un repère orthonormé. 1. Montrer que pour tout réel x∈D, 2. Montrer qu’il existe trois réels a,b et c(où c 0 , - : − ∞ − 1[∪] − 1; 2 − √2[∪]2 − √2; +∞[ d’où f est strictement décroissante sur 42 − √2 ; 2[ ! , - ]2 ; 2 + √2: et f est strictement croissante sur < , /=! -> 0 ! lim x − 2 = 0 Avec x-22 d’où par quotient lim
→ H →

= +∞

! lim
→ I



= −∞

4. a. Déterminer toutes les asymptotes de la courbe représentative de f. (on montrera bien que les asymptotes données sont les seules !) La fonction f est définie sur D= ℝ\{−1 ; 2} Donc la courbe représentative de f ne peut admettre des asymptotes qu’en -∞, -1, 2 et +∞ Or lim → = 0 donc la courbe n’a pas d’asymptote au voisinage de 0 De plus lim = +∞ ! lim = −∞ JK=L la courbe admet la droite d’équation x=2 comme asymptote
→ H → I

verticale au voisinage de 2 Enfin, pour tout réel x de D, f(x)-(ax+b)=
→ C

avec c>0, lim − 3 + 6 = +∞
→ C → →

! lim − 3 + 6 = −∞ JK=L D - M K!/ =! lim [f x − ax + b ] = 0 ! lim [f x − ax + b ] = 0 R N D’où la courbe représentative de f admet pour asymptote la droite d’équation y=ax+b Conclusion : la courbe représentative de f n’admet que deux asymptotes. b. Etudier la position relative de Cf par rapport à la droite ∆ d’équation y=ax+b. pour tout réel x de D, f(x)-(ax+b)= avec c>0, donc f(x)-(ax+b) est du signe de -3x+6 sur D c’est-à-dire nul en 2, strictement négatif sur ]2 ;+∞[ et strictement positif sinon sur D Donc Cf est au-dessus de la droite d’équation y=ax+b sur ]-∞ ;-1[∪]-1 ;2[ Cf est au-dessous de la droite d’équation y=ax+b sur ]2 ;+∞[ c. Déterminer les coordonnées des points d’intersection de Cf avec les axes du repère. Cf coupe l’axe des ordonnées au point A de cordonnées (0 ;f(0)) c’est-à-dire (0,0) Les abscisses des

en relation

  • TES TD1 Corrige
    3524 mots | 15 pages
  • Corrigé bts ol 2006 corrigé
    1149 mots | 5 pages
  • Corrigé dcg 1
    4880 mots | 20 pages
  • 179449_chap04_corr
    5120 mots | 21 pages
  • Corrigé amérique nord nord
    3294 mots | 14 pages
  • Corrigé brevet blanc maths
    989 mots | 4 pages
  • Dm de math exponentielle
    599 mots | 3 pages
  • projet
    809 mots | 4 pages
  • math 5eme
    1723 mots | 7 pages
  • Réactivation des essentiels de 4eme
    1403 mots | 6 pages
  • Corrigé dm de maths
    4279 mots | 18 pages
  • Lyon2 L1_etu_CM1
    3594 mots | 15 pages
  • Maths les primitives
    1329 mots | 6 pages
  • Tout?
    2308 mots | 10 pages
  • La continuité des fonctions reelles
    3660 mots | 15 pages