La continuité des fonctions reelles

3660 mots 15 pages
Chapitre 2
Continuité des fonctions réelles
2.1 Généralités
Définition 2.1.1. Une fonction réelle f est une application d’une partie D de R dans R.
La partie D est appelée ensemble (ou domaine) de définition de la fonction.
Une fonction peut être définie de plusieurs façons :
– Par une formule explicite : f(x) =

x2 − 3 cos x
– Abstraitement : π(x) est le nombre de nombres premiers compris entre 0 et x.
2.2 Limite d’une fonction en un point
Soit D une partie de R, et soit x0 ∈ R. On
…afficher plus de contenu…

La réponse est malheureusement négative. Un contre-exemple nous est donné par la fonction f : R → R définie par f(x) = sin
(
1 x ) si x 6= 0, et f(0) = 0.
Cette fonction n’est pas continue en 0 mais elle satisfait bien la propriété des valeurs intermédiaires pour chaque couple de points dans R.
Plus généralement, le théorème de Darboux affirme que toute fonction [a, b] → R qui admet une primitive satisfait la propriété des valeurs intermédiaires.
2.3.2 Théorème des bornes
Théorème 2.3.5 (Théorème des bornes). Soient a et b deux réels avec a < b, et soit f : [a, b] → R une fonction continue. Alors f est bornée sur [a, b], et atteint ses bornes.
Démonstration. Commençons par montrer que f est majorée. Raisonnons par l’absurde
…afficher plus de contenu…

Démonstration. (1). D’après le théorème des valeurs intermédiaires, f étant continue, l’image de I par f est un intervalle. Comme f est strictement monotone, elle est injective, donc réalise une bijection avec son image. Sachant cela, il est facile de vérifier que les bornes de J sont les limites de f aux bornes de I. (2). On peut supposer que f est strictement croissante. Montrons d’abord que f−1 est strictement croissante sur J . Soient a et b dans J tels que a < b, et soient x = f−1(a) et y = f−1(b). Alors l’inégalité x ≥ y est impossible car elle impliquerait f(x) ≥ f(y), c’est-à-dire a ≥ b. Nous avons donc x < y, ce qui prouve que f−1 est strictement croissante. Reste à voir que f−1 est continue.

en relation

  • Corrigé bts ol 2006 corrigé
    1149 mots | 5 pages
  • Corrigé dcg 1
    4880 mots | 20 pages
  • Corrigé amérique nord nord
    3294 mots | 14 pages
  • SupTSI1112DiversCB2
    886 mots | 4 pages
  • Dm de math exponentielle
    599 mots | 3 pages
  • projet
    809 mots | 4 pages
  • math 5eme
    1723 mots | 7 pages
  • Réactivation des essentiels de 4eme
    1403 mots | 6 pages
  • Corrigé dm de maths
    4279 mots | 18 pages
  • 2011 060
    1326 mots | 6 pages
  • Lyon2 L1_etu_CM1
    3594 mots | 15 pages
  • Sujet bac pro français
    628 mots | 3 pages
  • Corrigé chapitre 5 fonction exponentielle
    583 mots | 3 pages
  • Compréhension et complexité du roman
    2012 mots | 9 pages
  • les nuages
    621 mots | 3 pages