Opibilite de black and s Scholes

3472 mots 14 pages
21
Sensibilité de la prime d’une option à la variation des paramètres de la formule de Black & Scholes Olivier Levyne (2007)
Docteur en Sciences Economiques
HDR en Sciences de Gestion
Les dérivées partielles de la formule de Black and Scholes expriment la sensibilité de la prime d’une option aux petites variations des principaux paramètres : cours du sous-jacent, volatilité, temps restant jusqu’à l’échéance, taux d’intérêt sans risque.
Elles permettent de déterminer des indicateurs
…afficher plus de contenu…

Donc ici :
S
SC

 )( = C’(S) = dérivée de C par rapport à S
Par ailleurs : d1 =


2
²ln ++r
E
S =


2
²lnln ++ re
E
S =


 2
²ln + rEe S =


 2
²
)( ln +
−rEe
S
Donc d1 =


2
²lnln +− −rEeS
 = C’(S) = [S(d1)–Ee-r(d2)]’ = 1.[d1(S)]+S[d1(S)]’-Ee-r[d2(S)’ dans la mesure où :
{u[v(x)]}’ = u’[v(x)]. v’(x). 2
En outre, si (x) =
2
1
 −
−x
t dte 2
2
alors ’(x) =
2
1 2
²x
e

=f(x)
Dès lors :
 =  (d1) + S.f[d1(S)].d’1(S) -Ee-r.f[d2(S)].d’2 (S).
Or : d2(S)= d1 (S)-   alors, d’2(S)= d’1 (S)
Et :
)( 2df = f(d1-  ) = 2
)( 2
1
2
1
td e 



= 22
2
1
2
1
2
1



−+− d d e = 22
2
1
2
1
..
2
1



−−
eee d d
= 22 ln 2
222
1
..
2
1



−+−
− eee rEe
Sd
= 222
222
1
..
.
.
2
1




…afficher plus de contenu…

r e r



 − = Rho du call – 0 -  . reE −. =  .Ee-r(d2) -  . reE −. = - . reE −. [1-(d2)]
Rho du put = - . reE −. .(-d2) 14
Exemple 5
Le rho des options de l’exemple 1 exprime la variation des primes des options engendrée par une variation de 1, soit 100%, du taux sans risque
Rho du call = 0,833 x 100.e-0,583x0,833(1,17) = 70 €
Rho du put = 0,833 x 100.e-0,583x0,833(-1,17) = 0,833 x 100.e-0,583x0,833[(1,17)-1] = -10 €
Il est alors possible d’en déduire l’impact d’une variation de 1% du taux sans risque :
Rho du call =
100
70 = 0,70 €
Rho du put = -
100
10
= -0,10 €
Dans l’hypothèse où le taux sans risque continu est porté à 6,83% d1 =
833,0.20,0
833,0).
2
²20,0
0683,0(
100
120
ln ++ = 1,40 d2 = 1,40 –0,20 833,0 =

en relation

  • Corrigé maths ssi
    2285 mots | 10 pages
  • AmeriqueNord ES 2014
    1759 mots | 8 pages
  • CorrectionPondicheryS2008
    2380 mots | 10 pages
  • Loinormales Coursexos
    2177 mots | 9 pages
  • Ccp psi - 2010 - corrigé
    2738 mots | 11 pages
  • Dm de mathématiques
    540 mots | 3 pages
  • La lolf
    583 mots | 3 pages
  • Mathématiques DM
    1379 mots | 6 pages
  • Corrigé dm de physique
    1237 mots | 5 pages
  • Maths
    329 mots | 2 pages
  • Ahahah
    410 mots | 2 pages
  • Betty williams
    2430 mots | 10 pages
  • Français
    614 mots | 3 pages
  • Les bonnes de jean genet intro
    729 mots | 3 pages
  • Efe tgdd
    1031 mots | 5 pages