10069 100640 2
Compte rendu de la séance du 13 mai 2008 Par Karine Gabriele et Julien Rossier
Exposé de Liliana Esteves : L’IRONIE
BERRENDONNER (1981)
Berrendonner part de la définition traditionnelle de l’ironie, telle qu’on la trouve dans la rhétorique classique, qui dit que l’ironie est une figure par laquelle on veut faire entendre le contraire de ce qu’on dit. (Des Tropes, Dumarais).
Cette définition fonde l’ironie sur la présence d’une contradiction logique dans la signification de l’énoncé.
Pour Berrendonner, cette définition n’est pas satisfaisante, parce qu’elle ne rend pas compte de la spécification de l’ironie par rapport à autre trope. Il va s’appuyer sur la théorie de l’argumentation de Ducrot pour mettre en évidence les propriétés distinctives de l’ironie, et postuler que ce qui différencie l’ironie d’autres tropes qui s’appuient également sur la contradiction, c’est que l’ironie réside en une contradiction de valeurs argumentatives. Il délimite deux classes d’arguments à l’œuvre dans l’ironie :
- La classe d’arguments en faveur d’une conclusion r (associée à la couche littérale de l’énoncé)
- la classe d’arguments en faveur d’une conclusion non-r (associée à la couche non littérale de l’énoncé)
Ces deux classes s’excluent mutuellement (un seul et même énoncé ne peut servir à la fois à argumenter dans un sens et dans le sens contraire) ; or l’ironie enfreint cette loi générale de cohérence.
Rien n’était si beau, si leste, si brillant, si ordonné que les deux armées. Les trompettes, les fifres, les hautbois, les tambours, les canons, formaient une harmonie telle qu’il n’y en eut jamais en enfer. (Voltaire, Candide)
On trouve dans cet exemple une conclusion r (les armées c’est bien) qui correspond à l’aspect littéral de l’énoncé, puis une conclusion non-r (les armées c’est l’enfer) qui est contraire à la première, engendrant ainsi l’ironie.
Berrendonner s’attache ensuite à mettre en évidence les possibilités